
Technical Information Thermopads

Thermopads consist of PVC with normal impact strength and high chemical resistance.

Thermopads have the following special properties:

- high strength
- high rigidity and hardness
- high resistance to chemicals
- good electrical insulating properties
- low water absorption
- low ductility
- good machining properties
- good thermoforming properties
- good weldability
- very good properties for marking
- very good adhesion properties
- limited weather resistance

Technical Data:

Mechanical properties

Density	approx. 1.44 g / cm ³	ISO 1183
Yield stress	55 MPa	DIN EN ISO 527
Elongation at brake	20 %	DIN EN ISO 527
E modulus	3000 MPA	DIN EN ISO 527
Notch impact strength at 23 °C	$4 \text{ kJ} / \text{m}^2$	DIN EN ISO 179
Shore hardness D	82	DIN EN ISO 868
Ball indentation hardness	110 MPa	DIN EN ISO 2039-1
Compression strength	75 MPa	DIN EN ISO 604
Bending stress	80 MPa	DIN EN ISO 178
Colour	iron grey	analogous to RAL 7011

Thermal properties

Thermal conductivity	0.16 W/(m·K)	DIN EN ISO 8302
Vicat softening temperature	75 °C	DIN EN ISO 306, Vicat B
Rated range of use	- 20 °C to + 60 °C	
Dimensional stability under heat	70 °C	DIN EN ISO 75
Linear coefficient of expansion	approx. 0,075 mm/mK	DIN EN ISO 11359-2
Heating wire ignition temperature	925 °C	DIN EN ISO 60695-2-13
Heating wire combustibility number	960 °C	DIN EN ISO 60695-2-12

Electrical properties

Dielectric constant	approx. 3.2	IEC 60250
Dielectric loss factor (10 ⁶ Hz)	approx. 0.02	IEC 60250
Contact resistance	> 101⁵ Ω·cm	DIN EN 62631-3-1
Surface resistance	> 1013 Ω	DIN EN 62631-3-2
Disruptive strength	12 kV/mm	IEC 60243
Creep resistance	600 CTI	IEC 60112

Chemical resistance:

Thermopads are highly resistant to acids, bases, salt solutions.

Thermopads are not resistant to acetone, ether, benzene, chloroform and concentrated hydrochloric acids.

Technical Information Thermopads

Available material thicknesses:

Thickness in mm	Thickness tolerance in mm
1	± 0.110
2	± 0.140
3	± 0.170
4	± 0.200
5	± 0.230
6	± 0.260
8	± 0.320
10	± 0.380
12	± 0.440
15	± 0.530
20	± 0.680
25	± 0.830
30	± 0.980

Attention! Important Note:

Above information are based on best present knowledge of current technology, but do not guarantee faultless processing of our products. The information is based on practical results of our tests, but is not binding and does not constitute warranties of characteristics in terms of Federal Supreme Court jurisdiction. Our information does not constitute a legally binding assurance of certain properties or suitability for a specific purpose. Supplementary information by our specialists are merely recommendations, for which no liability is accepted.

Due to the many possible applications of our products, we recommend subjecting the project to a thorough suitability test on original materials before release for further application.

Since our information are non-binding we do not warranty their correctness. For this reason we accept no liability for possible improper processing based on information submitted by our employees.

This technical data sheet replaces all previous versions and is valid until a new version is issued, or until Dec. 31, 2024. Please request the latest version after Jan. 01, 2025.

Dr. Hermann, Anwendungstechnik / Application Technology, Gingen / Fils

BOSIG GmbH D – 73333 Gingen, Brunnenstraße 75 - 77

Telephone +49(0)7162-40 99-0 Fax +49(0)7162-40 99-200

www.bosig.de info@bosig.de